
Palm, Inc.
Palm OS® Bluetooth Support

Palm OS Bluetooth WhitePaper Palm Inc.

Rev 1,0, December 12, 2000

ii

Table of Contents

1 INTRODUCTION ... 1

2 PALM OBJECTIVES ... 1

3 FUNCTIONAL FEATURES ... 2

3.1 BLUETOOTH FEATURES DEFINED .. 2

3.1.1 Bluetooth Protocol Stack.. 2

3.1.1.1 Bluetooth Core Protocols... 4

3.1.1.1.1 Baseband ... 4

3.1.1.1.2 Audio .. 5

3.1.1.1.3 Link Manager Protocol .. 5

3.1.1.1.4 Logical Link Control and Adaptation Protocol.. 5

3.1.1.1.5 Service Discovery Protocol ... 5

3.1.1.2 Cable Replacement Protocol ... 6

3.1.1.2.1 RFCOMM ... 6

3.1.1.3 Telephony Control Protocol ... 6

3.1.1.3.1 Telephony Control – Binary... 6

3.1.1.3.2 Telephony Control – AT Commands ... 6

3.1.1.3.3 Palm OS Telephony Control Support .. 6

3.1.1.4 Adopted Protocols ... 7

3.1.1.4.1 PPP .. 7

3.1.1.4.2 TCP/UDP/IP ... 7

3.1.1.4.3 OBEX Protocol.. 7

3.1.1.4.4 Content Formats ... 7

3.1.2 Bluetooth Profiles... 8

3.1.3 Bluetooth Security.. 11

3.1.3.1 Encryption ... 12

3.1.3.2 Authentication.. 12

3.1.3.3 Authorization ... 12

3.1.3.4 Supported Security Modes .. 12

3.1.3.5 Secure Link Establishment .. 13

3.1.3.5.1 Unknown Device... 13

3.1.3.5.2 Paired Device ... 13

3.1.4 Device Discovery ... 14

3.1.5 Piconet Support ... 15

Palm OS Bluetooth WhitePaper Palm Inc.

Rev 1,0, December 12, 2000

iii

3.1.6 Bluetooth Virtual Serial Port ... 17

3.1.6.1 Palm OS Usage of the Virtual Serial Driver.. 18

3.1.6.2 Third Party Application Usage of the Virtual Driver 18

3.1.7 Bluetooth HotSync Support .. 19

3.1.7.1 PC-Based HotSync Operations ... 19

3.1.7.2 Access Point HotSync Operations ... 19

3.1.7.3 Cell Phone HotSync Operations .. 19

3.1.8 Telephony Support... 19

3.1.9 Exchange Library Support.. 20

3.1.10 Radio Power Management ... 20

4 BLUETOOTH HARDWARE SUBSYSTEM ... 22

4.1 BLUETOOTH RADIO TRANSMITTER... 22

4.2 HOST CONTROL INTERFACE (HCI) TRANSPORT LAYER... 23

4.3 PALM BLUETOOTH REFERENCE HARDWARE... 23

5 FUNCTIONAL RELATIONSHIPS ... 24

5.1 DEVELOPING BLUETOOTH ENABLED APPLICATIONS.. 28

6 BLUETOOTH DEVELOPER API DESCRIPTION .. 29

6.1 LIBRARY FUNCTIONS .. 29

6.1.1 BtLibOpen.. 29

6.1.2 BtLibClose ... 30

6.1.3 BtLibSleep ... 30

6.1.4 BtLibWake ... 31

6.2 MANAGEMENT ENTITY FUNCTIONS .. 31

6.2.1 BtLibRegisterManagementNotification ... 32

6.2.2 BtLibUnRegisterManagementNotification... 32

6.2.3 BtLibStartInquiry .. 33

6.2.4 BtLibCancelInquiry... 34

6.2.5 BtLibDiscoverSingleDevice .. 35

6.2.6 BtLibDiscoverMultipleDevices .. 36

6.2.7 BtLibGetSelectedDevices .. 37

6.2.8 BtLibRemoteDeviceGetName .. 38

6.2.9 BtLibLinkCreate ... 39

6.2.10 BtLibLinkDisconnect ... 40

6.2.11 BtLibLinkSetState ... 41

6.2.12 BtLibLinkGetState... 42

6.2.13 BtLibSetGeneralPreference .. 42

6.2.14 BtLibGetGeneralPreference.. 43

6.2.15 Link Preferences:.. 44

Palm OS Bluetooth WhitePaper Palm Inc.

Rev 1,0, December 12, 2000

iv

6.2.16 General Preferences... 44

6.3 SOCKETS... 45

6.3.1 BtLibSocketCreate ... 45

6.3.2 BtLibSocketClose... 46

6.3.3 BtLibSocketListen .. 47

6.3.4 BtLibSocketConnect .. 47

6.3.5 BtLibSocketConnectionRespond.. 48

6.3.6 BtLibSocketSend ... 49

6.3.7 BtLibSocketGetInfo .. 50

6.3.8 Socket Information ... 51

6.4 SERVICE DISCOVERY PROTOCOL (SDP).. 51

6.4.1 BtLibSdpGetServiceRecordsByServiceClass... 52

6.4.2 BtLibSdpServiceRecordMapRemote.. 53

6.4.3 BtLibSdpServiceRecordCreate .. 53

6.4.4 BtLibSdpServiceRecordDestroy... 54

6.4.5 BtLibSdpServiceRecordStartAdvertising .. 55

6.4.6 BtLibSdpServiceRecordStopAdvertising .. 56

6.4.7 BtLibSdpServiceRecordSetAttributesForSocket... 56

6.4.8 BtLibSdpServiceRecordSetAttribute... 57

6.4.9 BtLibSdpServiceRecordGetAttribute .. 58

6.4.10 BtLibSdpServiceRecordGetLengthOfStringOrURL 59

6.4.11 BtLibSdpServiceRecordGetNumListEntries .. 60

6.4.12 BtLibSdpServiceRecordGetNumLists ... 61

6.4.13 BtLibSdpServiceRecordSetRawAttribute .. 62

6.4.14 BtLibSdpServiceRecordGetRawAttribute.. 63

6.4.15 BtLibSdpServiceRecordGetSizeOfRawAttribute ... 64

6.5 BLUETOOTH BYTE ORDERING ROUTINES .. 65

6.5.1 BtLibHTo/NS/NL/HS/HL... 65

6.6 BLUETOOTH ADDRESS CONVERSION ... 66

6.6.1 BtLibAddrBtdToA ... 66

6.6.2 BtLibAddrBtdToA ... 66

Palm OS Bluetooth White Paper Palm Inc. Page 1 of 67

Rev 1.0, December 12, 2000

1 Introduction

Bluetooth is a new and exciting technology that has fired the imagination of the entire
technical community. The standard is still evolving, and volume shipments of products are
not anticipated until Q1/Q2 of 2001. In technical terms, Bluetooth is a new low-cost short-
range Frequency Hopping Spread Spectrum (FHSS) radio technology in the 2.4 GHz ISM
band. This document describes the integration of Bluetooth into Palm products.

Bluetooth is an industry standard being developed by the Bluetooth Special Interest Group
(SIG), with includes the following founding (promoter) companies: 3Com, Ericsson, IBM,
Intel, Lucent, Microsoft, Motorola, Nokia and Toshiba. Currently, there are over 2000
additional adopter/associate member companies. Palm, Inc. is an associate member of
the SIG. Additional information about Bluetooth can be found at http://www.bluetooth.com.

The original Bluetooth specification, version 1.0B, was released December 1999. As of this
writing, it is anticipated that version 1.1 will be released by the SIG by the end of the 2000,
Version 1.1 addresses issues in the 1.0B specification by including errata. A final draft
version of the 1.1 specification was published in October of 2000. Palm intends to release
a product compliant with version 1.1 of the SIG specification.

This document provides information with respect to work in progress on Bluetooth enabled
products within Palm. Please note that the information contained herein is subject to
change prior to product release. This document will be updated as new information is
received. The latest version of this document can be found in the Developer area of the
Provider Pavilion on http://www.palmos.com.

2 Palm Objectives

Bluetooth is all about connectivity and interoperability between Bluetooth-enabled devices.
To ensure that devices can talk to each other, the SIG has created profiles, or usage
scenarios. These profiles provide a basis for the development of a common core set of
functions that the first Bluetooth-enabled devices will support. The SIG requires that all
devices must be qualified using a standardized set of test procedures to ensure
interoperability and conformance to the Bluetooth specification. Palm intends to provide a
compelling, intuitive, and easy to use implementation of Bluetooth, optimized for the Palm
OS™.

Palm’s ultimate goal is to integrate Bluetooth radio technology into Palm handheld devices
as soon as the technology matures enough for it to do so. Until then, Palm will produce
Bluetooth-enabled peripheral devices.

http://www.bluetooth.com/

Palm OS Bluetooth White Paper Palm Inc. Page 2 of 67

Rev 1.0, December 12, 2000

Palm OS® support for Bluetooth provides Bluetooth connectivity to Palm OS features, such
as HotSync® operations and PPP network access. Additionally, a comprehensive
Application Programmer Interface (API) allows development of Bluetooth-enabled
applications. Key elements of the software system design include:

• Provide a consistent UI and API across all Palm OS devices.

• Release a Bluetooth product that conforms to version 1.1 of the Bluetooth Special
Interest Group (SIG) specification.

• Develop and integrate an API to allow developers to write Bluetooth-enabled
applications

• Provide a software architecture that allows for the integration of new radio hardware
easily through the Host Controller Interface (HCI), a hardware abstraction layer defined
in the Bluetooth specification.

• Provide a User Interface (UI) for device discovery and connection.

• Provide a UI for Personal Identification Number (PIN) entry.

• Provide appropriate modifications to the Palm Connection Panel to support Bluetooth.

• Allow emulation of serial ports using the Virtual Serial Port driver.

• Support desktop-based HotSync operations with a select number of Bluetooth PC
Cards.

• Support HotSync operations over the Internet Protocol (IP) using cell phones and
access points.

• Maintain compatibility with Wireless Internet Kit and other popular third party Internet
applications.

3 Functional Features

3.1 BLUETOOTH FEATURES DEFINED

Within the Bluetooth SIG specification, certain features are mandatory and others are
optional. This section provides an overview of the Bluetooth specification, and defines
which of the optional features that Palm has elected to support.

3.1.1 Bluetooth Protocol Stack

Bluetooth allows for developing interactive services and applications over interoperable
radio modules and data communication protocols. The ultimate objective of the Bluetooth
protocol stack is to allow applications to interoperate with each other.

Palm OS Bluetooth White Paper Palm Inc. Page 3 of 67

Rev 1.0, December 12, 2000

Figure 1 shows the complete Bluetooth protocol stack as identified in the specification.
Interoperable applications supporting Bluetooth usage models are built on top of this
protocol stack. Not all applications make use of all protocols shown in Figure 1. Instead,
applications run over one or more vertical slices from this protocol stack.

Figure 1 – Bluetooth Stack

The Bluetooth protocol stack can be divided into four layers according to their purpose, as
shown in the following table:

Bluetooth Stack

HCI Transport Library

L2CAP

RFCOMM SDP

Physical Transport Driver

Link Manager Protocol

Baseband

Bluetooth Radio

Host Controller
Interface

Palm OS Bluetooth White Paper Palm Inc. Page 4 of 67

Rev 1.0, December 12, 2000

Protocol Layer Protocols in the Stack

Bluetooth Core Protocols Baseband, LMP, L2CAP, SDP

Cable Replacement Protocol RFCOMM

Telephony Control Protocols TCS Binary, AT-commands

Adopted Protocols PPP, UDP/TCP/IP, OBEX, WAP,

vCard, vCal, IrMC , WAE

Table 1 – Bluetooth Supported Protocols and Layers

In addition to the above protocol layers, the specification also defines a Host Controller
Interface (HCI), which provides a command interface to the baseband controller and link
manager and also provides access to hardware status and control registers.

3.1.1.1 Bluetooth Core Protocols

3.1.1.1.1 Baseband

The baseband layer and the link control layer enable the physical Radio Frequency (RF)
link between Bluetooth units. When two or more units are linked in this manner, it is called
a piconet. The Bluetooth RF system is a Frequency Hopping Spread Spectrum (FHSS)
system in which packets are transmitted in defined time slots on defined frequencies. The
Baseband Layer uses inquiry (remote device discovery) and paging (establishing
connections to remote devices) procedures to synchronize the transmission hopping
frequency and the clock of different Bluetooth devices. Two kinds of physical links can be
formed with their corresponding baseband packets: Synchronous Connection-Oriented
(SCO) and Asynchronous Connectionless (ACL). These can be transmitted in a
multiplexing manner on the same RF link. ACL packets are used for data only, while the
SCO packet can contain audio only or a combination of audio and data. Table 2 defines
which physical links are supported.

Link Type Description Palm

Feature

Synchronous
Connection-Oriented
(SCO) link

The SCO link is a symmetric, point-to-point
link between the master and a specific slave.
The SCO link reserves slots and can
therefore be considered as a circuit-switched
connection between the master and the
slave. The SCO link typically supports time-
bounded information like voice.

No

Asynchronous
Connection-Less
(ACL) link

In the slots not reserved for SCO links, the
master can exchange packets with any slave
on a per-slot basis. The ACL link provides a

Yes

Palm OS Bluetooth White Paper Palm Inc. Page 5 of 67

Rev 1.0, December 12, 2000

Link Type Description Palm

Feature

packet-switched connection between the
master and all active slaves participating in
the piconet. Both asynchronous and
isochronous services are supported.

Table 2 – Physical Link Types Supported

3.1.1.1.2 Audio

Audio data can be transferred between one or more Bluetooth devices, making various
usage models possible. Audio data in SCO packets is routed directly to and from the
baseband layer; it does not go through the Link Control and Adaptation Protocol (L2CAP).
The audio model is relatively simple within Bluetooth. Any two Bluetooth devices can send
and receive audio data between each other just by opening an audio link. SCO data links
are not supported.

3.1.1.1.3 Link Manager Protocol

The Link Manager Protocol is responsible for setting up the link between Bluetooth devices.
This includes security aspects like authentication and encryption by generating,
exchanging, and checking of link and encryption keys. It also includes the control and
negotiation of baseband packet sizes. Furthermore, it controls the power modes and duty
cycles of the Bluetooth radio device, and the connection states of a Bluetooth unit in a
piconet.

3.1.1.1.4 Logical Link Control and Adaptation Protocol

The L2CAP protocol adapts upper layer protocols over the baseband layer. L2CAP
provides both connection-oriented and connectionless data services to the upper layer
protocols with protocol multiplexing capability, segmentation and reassembly operation,
and group abstractions. L2CAP permits higher level protocols and applications to transmit
and receive L2CAP data packets up to 64 KB in length. L2CAP is defined only for ACL
links and not supported for SCO links, as specified by the Bluetooth Specification.

3.1.1.1.5 Service Discovery Protocol

Service Discovery is a crucial part of the Bluetooth framework. Using the Service Discovery
Protocol (SDP), specific information about a remote device, such as available services and
the characteristics of these services can be queried.

Palm OS Bluetooth White Paper Palm Inc. Page 6 of 67

Rev 1.0, December 12, 2000

3.1.1.2 Cable Replacement Protocol

3.1.1.2.1 RFCOMM

RFCOMM is a serial line emulation protocol and is based on the ETSI 07.10 specification.
This “cable replacement” protocol emulates RS-232 control and data signals over the
Bluetooth baseband layer, providing both of these transport capabilities for upper level
services (e.g. OBEX) that typically use serial line as a transport mechanism.

3.1.1.3 Telephony Control Protocol

3.1.1.3.1 Telephony Control – Binary

Telephony Control protocol - Binary (TCS Binary or TCS BIN), a bit-oriented protocol,
defines the call control signaling for the establishment of speech and data calls between
Bluetooth devices. In addition, it defines mobility management procedures for handling
groups of Bluetooth TCS devices. TCS Binary is specified in the Bluetooth Telephony
Control protocol Specification Binary, which is based on the ITU-T Recommendation
Q.931, applying the symmetrical provisions as stated in Annex D of Q.931

3.1.1.3.2 Telephony Control – AT Commands

The Bluetooth SIG defines a set of AT commands by which a mobile phone and modem
can be controlled. The AT commands that Bluetooth uses are based on ITU-T
Recommendation V.250 and ETS 300 916 (GSM 07.07). In addition, the commands used
for FAX services are also specified.

3.1.1.3.3 Palm OS Telephony Control Support

Table 3 defines which telephony control protocols are supported.

Telephony Control Description Palm

Feature

TCS – Binary Telephony Control Protocol Specification
Binary (TCS Binary), a bit-oriented protocol,
defines the call control signaling for the
establishment of speech and data calls
between Bluetooth devices.

No

AT Commands AT commands are based on ITU-T
recommendation V.250 and ETS 300 916.

Yes

Table 3– Telephony Control

Palm OS Bluetooth White Paper Palm Inc. Page 7 of 67

Rev 1.0, December 12, 2000

3.1.1.4 Adopted Protocols

3.1.1.4.1 PPP

In the Bluetooth specification, PPP runs over RFCOMM to accomplish point-to-point
connections. PPP is the IETF Point-to-Point Protocol and PPP-Networking is the means of
taking IP packets to/from the PPP layer and placing them onto the LAN.

3.1.1.4.2 TCP/UDP/IP

The TCP, UDP, and IP protocol standards are used for communication over the Internet
and are considered the most widely used protocol family in the world. The implementation
of these standards in Bluetooth devices allows for communication with any other device
connected to the Internet. TCP/IP/PPP is used for the all Internet Bridge usage scenarios in
Bluetooth 1.1 and for OBEX in future versions.

3.1.1.4.3 OBEX Protocol

IrOBEX (shortly OBEX) is a session protocol developed by the Infrared Data Association
(IrDA) to exchange objects in a simple and spontaneous manner. OBEX, which provides
the same basic functionality as HTTP but in a much lighter fashion, uses a client-server
model and is independent of the transport mechanism and transport API, provided the
transport mechanism is reliable. Along with the protocol itself, which is the "grammar" for
OBEX conversations between devices, OBEX also provides a model for representing
objects and operations. In addition, the OBEX protocol defines a folder-listing object, which
is used to browse the contents of folders on remote device. In the first phase of Bluetooth,
RFCOMM is used as sole transport layer for OBEX.

3.1.1.4.4 Content Formats

vCard and vCalendar are open specifications developed by the Versit Consortium and are
now controlled by the Internet Mail Consortium. These specifications define the format of
electronic business cards and scheduling information, respectively. vCard and vCalendar
do not define any transport mechanism, but only the format under which data is
transported.

Other content formats transferred by OBEX in Bluetooth are vMessage and vNote. These
content formats are also open standards. They are used to exchange messages and notes,
respectively. These standards are defined in the IrMC specification, which also defines a
format for the log files that are needed when synchronizing data between devices.

Palm OS Bluetooth White Paper Palm Inc. Page 8 of 67

Rev 1.0, December 12, 2000

3.1.2 Bluetooth Profiles

The Bluetooth Specification defines a set of usage models for Bluetooth radios. Profiles
define the protocols and protocol features supporting a particular usage model. In addition
to these profiles, there are four general profiles that are widely utilized by these usage
model oriented profiles. These are the:

• Generic Access Profile (GAP)

• Serial Port Profile

• Service Discovery Application Profile (SDAP)

• Generic Object Exchange Profile (GOEP)

Figure 2 below illustrates the profiles defined for Bluetooth. Profiles shaded in red are not
supported. Note that the profile definitions are hierarchical:

Generic Access Profile

Service Discovery
Profile

TCS-BIN-based Profiles

Cordless Phone
Profile

Intercom Profile

Serial Port Profile

Dial-up Networking
Profile

Fax Profile

Generic Object Exchange
Profile

Headset Profile

LAN Access Profile

File Transfer
Profile

Object Push Profile

Synchronization
Profile

Figure 2 – Bluetooth Profiles

The table below outlines each of the defined Bluetooth profiles and which are supported.
Palm does not support the Bluetooth Synchronization profile, but implements HotSync
operations over Bluetooth using the Serial Port profile.

Palm OS Bluetooth White Paper Palm Inc. Page 9 of 67

Rev 1.0, December 12, 2000

Bluetooth Profiles Description Palm
Feature

Generic Access The main purpose of the general access
profile is to describe the use of the lower
layers of the Bluetooth protocol stack (LC and
LMP) and to describe security related
alternatives, and higher layers (L2CAP,
RFCOMM and OBEX).

Yes

Service Discovery
Application

The service discovery profile defines the
protocols and procedures that should be
used by a service discovery application on a
device to locate services in other Bluetooth-
enabled devices using the Bluetooth Service
Discovery Protocol (SDP).

Yes

Cordless Telephony The cordless telephony profile defines the
protocols and procedures that should be
used by devices implementing the use case
called “3-in-1 phone.”

No

Intercom The intercom profile defines the protocols and
procedures that should be used by devices
implementing the intercom part of the usage
model called ”3-in-1 phone.” More popularly,
this is often referred to as the ”walkie-talkie”
usage of Bluetooth.

No

Serial Port The serial port profile defines the protocols
and procedures that should be used by
devices using Bluetooth for RS-232 (or
similar) serial cable emulation. The scenario
covered by this profile deals with legacy
applications using Bluetooth as a cable
replacement through a virtual serial port
abstraction (which in itself is operating
system-dependent).

Yes

Headset This headset profile defines the protocols and
procedures that should be used by devices
implementing the usage model called
“ultimate headset.” The most common
examples of such devices are headsets,
personal computers, and cellular phones.

No

Dial-up Networking
(DUN)

The dial-up networking profile defines the
protocols and procedures that should be
used by devices implementing the usage
model called “Internet Bridge” (see the
Bluetooth SIG Marketing Requirements
Document). The most common examples of
such devices are modems and cellular

Yes

Palm OS Bluetooth White Paper Palm Inc. Page 10 of 67

Rev 1.0, December 12, 2000

Bluetooth Profiles Description Palm
Feature

phones.

The following scenarios are covered by this
profile:

• Usage of a cellular phone or modem by a
computer as a wireless modem for
connecting to a dial-up internet access
server, or for using other dial-up services.

• Usage of a cellular phone or modem by a
computer to receive data calls.

Fax The fax profile defines the protocols and
procedures that shall be used by devices
implementing the fax part of the usage model
called “Data Access Points, Wide Area
Networks.”

No

LAN Access Point
(LAP)

The LAN access point profile defines LAN
access using PPP over RFCOMM.

Yes

Generic Object
Exchange Profile
(GOEP)

The generic object exchange profile defines
the protocols and procedures that should be
used by the applications providing the usage
models that need object exchange
capabilities. The usage model can be, for
example, Synchronization, File Transfer, or
Object Push model. The most common
devices using these usage models can be
notebook PCs, PDAs, smart phones, and
mobile phones.

Yes

Object Push The object push profile defines the
requirements for the protocols and
procedures that shall be used by the
applications providing the object push usage
model. This profile makes use of the generic
object exchange profile to define the
interoperability requirements for the protocols
needed by applications. The most common
devices using these usage models can be
notebook PCs, PDAs, and mobile phones.

Yes

File Transfer The file transfer profile defines the
requirements for the protocols and
procedures that shall be used by the
applications providing the file transfer usage
model. This profile uses the generic object
exchange profile as a base profile to define
the interoperability requirements for the
protocols needed by the applications. The
most common devices using these usage

No

Palm OS Bluetooth White Paper Palm Inc. Page 11 of 67

Rev 1.0, December 12, 2000

Bluetooth Profiles Description Palm
Feature

models can be (but are not limited to) PCs,
notebooks, and PDAs.

Synchronization The synchronization profile defines the
requirements for the protocols and
procedures that should be used by the
applications providing the Synchronization
usage model. This profile makes use of the
generic object exchange profile to define the
interoperability requirements for the protocols
needed by applications. The most common
devices using these usage models might be
notebook PCs, PDAs, and mobile phones.

No

Table 4– Bluetooth Profile Support Requirements

3.1.3 Bluetooth Security

To provide usage protection and information confidentiality, the system has to provide
security measures both at the application layer and at the link layer in a manner that is
appropriate for a peer environment. This means that in each Bluetooth unit, the
authentication and encryption routines must be implemented in the same way. Four
different entities are used for maintaining security at the link layer:

• A public address (Bluetooth device address, BD_ADDR), unique for each device.

• Two secret keys (authentication and encryption).

• A random number unique for each new transaction.

The Bluetooth addresses are publicly known and can be obtained manually through UI
interactions or automatically through an inquiry routine performed by a Bluetooth unit.

The secret keys are derived during initialization and are never disclosed. Normally, the
encryption key is derived from the authentication key during the authentication process.
The authentication algorithm always uses a 128-bit key. For the encryption algorithm, the
key size may vary between 1 and 16 octets (8 - 128 bits).

The size of the encryption key is configurable for two reasons. The first has to do with the
many different requirements imposed on cryptographic algorithms in different countries.
The second reason is to facilitate a future upgrade path for the security without the need of
a costly redesign of the algorithms and encryption hardware; increasing the effective key
size is the simplest way to combat increased computing power at the opponent side.

Palm OS Bluetooth White Paper Palm Inc. Page 12 of 67

Rev 1.0, December 12, 2000

The encryption key is entirely different from the authentication key (even though the latter is
used when creating the former). The lifetime of the encryption key does not necessarily
correspond to the lifetime of the authentication key. A new encryption key is generated
each time encryption is activated. It is anticipated that the authentication key will be more
static in nature than the encryption key. Once the authentication key is established, the
particular application running on the Bluetooth device decides when, or if, to change it. The
authentication key will often be referred to as the link key.

Palm will handle the generation, utilization and storage of authentication and encryption
keys at the OS level.

3.1.3.1 Encryption

User information can be protected by encryption of the packet payload; the access code
and the packet header are never encrypted. The encryption of the payloads is carried out
with a stream cipher called E0 that is resynchronized for every payload.

3.1.3.2 Authentication

Authentication is the process of verifying who is at the other end of the link. In Bluetooth,
the authentication procedure performs authentication for devices based on the stored link
key or by pairing (in which the user enters a PIN). The Palm OS platform will handle
authentication requests, including the user query for a PIN, at the OS level.

3.1.3.3 Authorization

Authorization is the process of deciding if device X is allowed to have access to service Y.
Trusted devices (authenticated and indicated as “trusted”) are allowed access to services.
Untrusted or unknown devices may require authorization based on user interaction before
access to services is granted. This does not principally exclude that the authorization might
be given by an application automatically. Authorization always includes authentication. The
Palm OS platform does not support this feature; access concerns beyond authentication
are left to the individual application, as in a standard networking environment (see following
section for details).

3.1.3.4 Supported Security Modes

The generic access profile specifies three security modes for a device:

• Security mode 1 (non-secure): A device will not initiate any security procedure.

Palm OS Bluetooth White Paper Palm Inc. Page 13 of 67

Rev 1.0, December 12, 2000

• Security mode 2 (service-level enforced security): A device does not initiate security
procedures before channel establishment at L2CAP level. This mode allows different
and flexible access policies for applications, especially running applications with
different security requirements in parallel.

• Security modes 3 (link level enforced security): A device initiates security procedures
before the link set-up at the LMP level is completed.

Palm OS will support security modes 1 and 2.

3.1.3.5 Secure Link Establishment

Secure connections require authentication and encryption. Authentication may or may not
require the user to enter a PIN number. The two possible scenarios are:

• Remote device is unknown

• Remote device is known and paired

3.1.3.5.1 Unknown Device

The user will be required to enter a PIN number to establish the connection. PIN numbers
are not stored in the Palm OS. The user must enter the PIN number manually whena
connection is desired. The same PIN number must be entered on the devices at both ends
of the connection. The PIN and a random number are used to create an initialization key
(K init). Authentication then needs to be done, whereby the calculation of the
authentication response is based on K init instead of the link key.

After a successful authentication, the link key is created. The link key created in the pairing
procedure will either be a combination key or one of the unit’s unit keys. This common link
key is then stored in each device, and the two devices are then paired, such that no PIN
entry will be required to establish a secure connection to the device in the future. The
remote device might not allow pairing, in which case a PIN would be required to be entered
each time a connection is established. At this point, the remote device is considered to be
paired, and future secure links will be established using the “Paired Device” method
specified bellow. A method for “un-pairing” devices will be provided to the user.

3.1.3.5.2 Paired Device

Paired devices share a common link key that was created and exchanged during the
pairing procedure when the two devices communicated for the first time. Once two devices
have paired, PIN entry is not required to establish a secure connection.

Palm OS Bluetooth White Paper Palm Inc. Page 14 of 67

Rev 1.0, December 12, 2000

In paired devices, the link key is used in an authentication procedure based on a challenge-
response scheme. The verifier (initiator) sends a random number (the challenge) to the
claimant. The claimant calculates a response, which is a function of the challenge, the
claimant’s Bluetooth address (BD_ADDR) and a secret key (link key) and sends it to the
verifier. The verifier checks the response. If the response is correct, the connection is
established, otherwise the connection fails.

3.1.4 Device Discovery

In a Bluetooth system, ad-hoc networks are established between Bluetooth devices. The
specification provides a method to discover Bluetooth units that are in range, the inquiry
procedure. Once a device has been discovered, a connection can be established to it. In
addition to an inquiry, a discovery also includes for the retrieval of friendly names from
remote devices, since this information is not included in the inquiry response. The following
table defines the supported Bluetooth inquiry modes:

Inquiry Mode Description Palm
Feature

General Provides the initiator with the Bluetooth
device address, clock, device class, and used
page scan mode of general discoverable
devices. Also, devices in limited discoverable
mode will be discovered using general
inquiry. The general inquiry should be used
by devices that need to discover devices that
are made discoverable continuously or for no
specific condition.

Yes

Limited Provides the initiator with the Bluetooth
device address, clock, device class, and used
page scan mode of limited discoverable
devices. The latter devices are devices that
are in range with regard to the initiator, and
may be set to scan for inquiry messages with
the Limited Inquiry Access Code, in addition
to scanning for inquiry messages with the
General Inquiry Access Code.

The limited inquiry should be used by devices
that need to discover devices that are made
discoverable only for a limited period of time,
during temporary conditions or for a specific
event.

No

Table 5– Inquiry Modes

Palm OS Bluetooth White Paper Palm Inc. Page 15 of 67

Rev 1.0, December 12, 2000

3.1.5 Piconet Support

A piconet is formed when a Bluetooth unit creates connections to one or more other
Bluetooth units. Bluetooth provides a point-to-point connection (only two Bluetooth units
involved), or a point-to-multipoint connection, see Figure 3. In the point-to multipoint
connection, the channel is shared among several Bluetooth units.

One Bluetooth unit acts as the master of the piconet, while the other units act as slaves. Up
to seven slaves can be active in the piconet. In addition, many more slaves can remain
locked to the master in a so-called parked state. These parked slaves cannot be active on
the channel, but they remain synchronized to the master. The master controls channel
access for both active and parked slaves.

Palm OS Bluetooth White Paper Palm Inc. Page 16 of 67

Rev 1.0, December 12, 2000

Figure 3 – Piconets (a,b) and Scatternet (C)

When creating piconets, one issue is how to handle existing master/slave ACL connections
as new links are added to the piconet. The Bluetooth specification recommends that
existing ACL connections be placed in hold or park mode to free up bandwidth while
performing page/inquiry and page/inquiry scanning. The other option is to leave current
connections active while new connections are established.

Palm will place existing connections in hold mode while new links are established. There
are two main scenarios in which a piconet can be created, and Palm OS will support both:

• Master performs inquiry, sees a number of devices, and proceeds to connect to each of
them. This case has the link policy problems (link policy race condition or link policy not
set). A variant is that the master later performs inquiry to find additional slaves. There
are no profiles in the current specification that use this scenario. Palm envisions this
scenario to be useful for a game server were the master establishes the connection to
each Palm device that wants to participate in a game.

• Master sits in page scan mode, and when a device connects to it, a master/slave switch
is performed. Policy setting is not needed if the switch is performed as part of the
connect operation. The LAN access profile uses this approach for multipoint LAN
access devices. Palm OS will handle the master/slave negotiation automattically.

For the first scenario, hold times for each connection will be determined based on a list of
devices that the user has selected to participate in the piconet. Palm OS will perform the
following for each device on the list:

• Establish an ACL connection to the device

Palm OS Bluetooth White Paper Palm Inc. Page 17 of 67

Rev 1.0, December 12, 2000

• Place the device in hold mode for a period of time that is a function of the total number
of devices that are to participate in the piconet.

• Delay for a set period of time to allow the slave to enter hold mode.

After all connections have been established, each of the slave hold timers should expire,
and the piconet should be operational.

3.1.6 Bluetooth Virtual Serial Port

The Palm OS implementation of the serial port profile will be a Bluetooth Virtual Serial
Driver. The Bluetooth virtual serial driver:

• Opens a background thread for the Bluetooth stack.

• Supports only one current active serial channel (point-to-point connection) at a time.

• Uses a blocking open call, thus requiring the use of a progress manager.

• Is opened explicitly as either a client or a server.

• Is utilized, as a client, by the following Palm OS components:

o PPP

o HotSync

o Telephony

• If opened as a server, advertises a list of services (UUIDs) for remote clients to
query.

• If opened as a client, creates the necessary baseband and RFCOMM connections,
based upon information passed in by the opener.

An RFCOMM-based virtual serial port is far less symmetrical than a physical serial port. In
a traditional serial port, there is no need to establish the underlying transport. However in
the establishment of a Bluetooth serial port, there are roles for a client and a server device
on three different stack levels (ACL, L2CAP, and RFCOMM) as well as responsibilities for
registering with and querying SDP.

Users of the Bluetooth virtual serial driver employ a new call, SrmExtOpen, when opening
the port. This call uses a custom info block to explicitly define whether it is opening the port
as a client or server. A Bluetooth port cannot be opened by the normal SrmOpen function
because it does not contain the required info block. Applications should first verify that the
serial driver is in fact a Bluetooth serial driver before passing this info block, as other
drivers may wish to use the block for other purposes.

The SrmExtOpen information block should contain:

Palm OS Bluetooth White Paper Palm Inc. Page 18 of 67

Rev 1.0, December 12, 2000

• Client/Server Flag - If the flag is set as server, the virtual driver will register as a
listener on a RFCOMM Channel, and create an entry in the SDP. If the flag is client,
the virtual will attempt to connect to a remote device.

Clients:

• UUID or RFCOMM channel - The UUID or channel number of the service to connect
to, depending upon how the Connection method flag is set.

• Device Address - the Bluetooth device address (BD_ADDR) of the remote device

• Connection method flag – Connect using either the service UUID or the RFCOMM
channel number.

Servers:

• UUID -The UUID to register for this service.

• Friendly name - The optional, user-readable name of the service to advertise.

3.1.6.1 Palm OS Usage of the Virtual Serial Driver

The Palm OS components HotSync, PPP, and Telephony Manager can only act as clients.
The virtual serial driver will block on the SrmExtOpen call while setting up the underlying
transport. Setting up the underlying transport involves three steps – the selection of a
target device, connection to the target, and the establishment of the protocol session (SDP,
L2CAP, RFCOMM).

The Connection Panel is where the device discovery and connection is performed. The
Connection Panel uses known UUIDs and service names for each of the services. For
example, PPP will set the remote service name to “Dial-up Networking” if connecting to a
modem or a phone. If it is connecting to a PC, however, it will set the UUID to “LAN Access
Point using PPP.” If the Connection Panel does not provide connection information in the
SrmExtOpen info block, a device discovery needs to be performed.

3.1.6.2 Third Party Application Usage of the Virtual Driver

Most third party applications will probably act as clients only; however, in the case of Palm-
to-Palm applications, they may need to act as both clients and servers. In the client-only
model, the BD_ADDR and UUID of a remote Bluetooth device advertising a desired service
should be passed to SrmExtOpen.

In cases where applications can act as either client or server, the virtual driver should
initially be configured as a server to advertise its services to the other remote device. At
this point, both devices are acting as servers, advertising their services. The role of server
describes the device that will be waiting for the establishment of the virtual serial
connection.

Palm OS Bluetooth White Paper Palm Inc. Page 19 of 67

Rev 1.0, December 12, 2000

On one of the devices, a user-initiated action, such as pressing a connect button, will cause
that device to reopen the virtual driver as a client. This device can then discover the
remote device and advertised service (advertised through a predefined, agreed upon
UUID) so that a channel can be opened between the two devices.

3.1.7 Bluetooth HotSync Support

Palm will not support the Bluetooth synchronization profile for HotSync operations. The
synchronization profile requires IRMCSync level communications and is not supported in
the Palm OS. Palm will support HotSync through the serial port profile. The virtual serial
port can then be used for PC HotSync operations, or network-based IP HotSync operations
over PPP.

3.1.7.1 PC-Based HotSync Operations

Bluetooth desktop HotSync operations will initially be supported only on the Windows
platform, with plans to expand support to additional platforms as Bluetooth technology
becomes available on those platforms. Palm will initially use the stacks and APIs provided
by individual card manufacturers, but will ultimately standardize on the Bluetooth stack
provided by Microsoft when it is made available. There will be a transitional period where
vendor-specific stacks will be required, but ultimately, it is anticipated that all vendors will
adopt the Microsoft stack, once released.

3.1.7.2 Access Point HotSync Operations

Network HotSync operations using an access point will use PPP.

3.1.7.3 Cell Phone HotSync Operations

Network HotSync operations using a cell phone will use PPP.

3.1.8 Telephony Support

The Palm OS will enable Telephony functionality, allowing the user to dial and control voice
calls on a Bluetooth-enabled phone as if it were connected through a serial cable. Since
telephony operation is not standardized by a profile in the Bluetooth Specification, universal
interoperability may not be possible.

Palm OS Bluetooth White Paper Palm Inc. Page 20 of 67

Rev 1.0, December 12, 2000

3.1.9 Exchange Library Support

Palm OS will provide a Bluetooth Exchange Library, allowing third party applications to take
advantage of Bluetooth support using the standard Exchange Manager APIs. The
Bluetooth Exchange Library will conform to the object push and object exchange profiles.

3.1.10 Radio Power Management

Palm has always considered the extended battery life of its handhelds to be a key
competitive advantage. Palm intends to continue to preserve battery life by taking
advantage of the Bluetooth power efficiency modes (hold, park, and sniff) as described
below, and by internal power management functionality built into the Bluetooth radio
chipset. Bluetooth radio technology is designed to minimise battery consumption. Battery
life is influenced by several factors:

• End user radio utilization profile.
• Default system configuration settings:

• The radio shall be both discoverable and connectable when the host is active.
• The radio shall be connectable when the host is suspended.

• Use of defined Bluetooth power efficiency modes:
• SNIFF(low power): In the sniff mode, the duty cycle of the slave’s listen activity can

be reduced. If a slave participates on an ACL link, it has to listen in every ACL slot
to the master traffic. With the sniff mode, the time slots where the master can start
transmission to a specific slave are reduced.

• HOLD: During the connection state, the ACL link to a slave can be put in a hold
mode. This means that the slave temporarily does not support ACL packets on the
channel any more. With the hold mode, capacity can be freed to do other things like
scanning, paging, inquiring, or attending another piconet. The unit in hold mode can
also enter a low-power sleep mode. During the hold mode, the slave unit keeps its
active member address (AM_ADDR).

• PARK: When a slave does not need to participate on the piconet channel but still
wants to remain synchronized to the channel, it can enter the park mode, which is a
low-power mode with very little activity in the slave. In the park mode, the slave
gives up its active member address AM_ADDR. Instead, it receives two new
addresses to be used in the park mode:

• PM_ADDR: 8-bit Parked Member Address

• AR_ADDR: 8-bit Access Request Address

• STANDBY (Lowest power): This is the state when the Module has no Bluetooth
connection and it is in between scans. The standby state is the default state in the
Bluetooth unit. In this state, the Bluetooth unit is in a low-power mode.

• Slaves not addressed in the first slot can go to sleep for the remaining slots the packet
occupies.

Applications will not explicitly put the radio into the sniff, park, or standby modes. Instead,
power management will be under the control of the OS. When participating in a piconet,

Palm OS Bluetooth White Paper Palm Inc. Page 21 of 67

Rev 1.0, December 12, 2000

the OS will honor requests from the other members of the piconet to enter any of the above
defined power savings modes.

Palm OS Bluetooth White Paper Palm Inc. Page 22 of 67

Rev 1.0, December 12, 2000

4 Bluetooth Hardware Subsystem

Palm will initially ship Bluetooth enabled peripheral devices. Palm OS software support for
Bluetooth is abstracted from and independent of the particular hardware implementation.
The generalized hardware subsystem is comprised of a Radio/Modem, referred to as RM,
Link Controller, referred to as LC, and the Baseband Controller, referred to as BC.

Bluetooth is a short-range radio link that operates in the unlicensed ISM band at 2.4 GHz. A
frequency hop transceiver is applied to combat interference and fading. A shaped, binary
FM modulation is applied to minimize transceiver complexity. The symbol rate is 1 Ms/s. A
slotted channel is applied with a nominal slot length of 625 ms. For full duplex transmission,
a Time-Division Duplex (TDD) scheme is used. On the channel, information is exchanged
through packets. Each packet is transmitted on a different hop frequency. A packet
nominally covers a single slot, but can be extended to cover up to five slots.

The Bluetooth protocol uses a combination of circuit and packet switching. Slots can be
reserved for synchronous packets. Bluetooth can support an asynchronous data channel,
up to three simultaneous synchronous voice channels, or a channel that simultaneously
supports asynchronous data and synchronous voice. Voice channels are not supported by
Palm. The asynchronous channel can support maximal 723.2 kb/s asymmetric (and still up
to 57.6 kb/s in the return direction), or 433.9 kb/s symmetric.

4.1 BLUETOOTH RADIO TRANSMITTER

The Bluetooth specification defines three RF transmitter power levels. The following table
specifies these power classes. Palm devices only support the lowest power output level.

Power

Class

Maximum
Output

Power (Pmax)

Nominal

Output
Power

Minimum

Output Power

Power Control Palm

Feature

1 100 mW (20
dBm)

N/A 1 mW (0 dBm) Pmin<+4 dBm
to Pmax

Optional:

Pmin to Pmax

No

2 2.5 mW (4 dBm) 1 mW (0
dBm)

0.25 mW (-6
dBm)

Optional:

Pmin to Pmax
No

3 1 mW (0 dBm) N/A N/A Optional:

Pmin to Pmax
Yes

Table 6 – Supported Power Class

Palm OS Bluetooth White Paper Palm Inc. Page 23 of 67

Rev 1.0, December 12, 2000

4.2 HOST CONTROL INTERFACE (HCI) TRANSPORT LAYER

The HCI Transport layer provides an abstraction of the physical interface used to
communicate between the handheld and the Bluetooth radio module. In the Palm OS, this
layer will be run time replaceable, allowing for the easy substitution of new physical
transports by licensees and hardware vendors. The Bluetooth specification currently
defines three transport protocols for the Host Control Interface, with a fourth (SD/IO)
expected shortly. The table below defines which transports are supported natively:

Transport Layer Description Palm

Feature

USB Universal Serial Bus No

RS-232 No

UART Yes

SD Card I/O Secure Data Card, currently not a defined
transport layer in the Bluetooth specification.

Yes

Table 7– HCI Transport Layers

4.3 PALM BLUETOOTH REFERENCE HARDWARE

The reference development hardware platform for Bluetooth is the Palm V Bluetooth
Hardcase, which will connect to a Palm V and Palm Vx device. The reference platform is
compatible with POSE, allowing development of Bluetooth enabled applications in the
standard development environment.

Palm OS Bluetooth White Paper Palm Inc. Page 24 of 67

Rev 1.0, December 12, 2000

5 Functional Relationships

Figure 4 illustrates the relationships between the functional components.

Figure 4 – Bluetooth Functional Relationships

In Figure 4, a Bluetooth-enabled Palm device is able to communicate with a variety of
remote Bluetooth-enabled devices. Palm OS uses the profiles defined by the Bluetooth
specification in order to support the following usage scenarios:

via via
cellcell

phonephone

Network AccessNetwork Access
PointPoint

wirelesswireless

•Wireless HotSync
•Web Clipping
•Messaging

Wireless Connectivity to WorldWireless Connectivity to World

Autodial from Address BookAutodial from Address Book

RF
Beaming

RF
Beaming

 wireless wireless
or or wirelinewireline

wirelinewireline

wirelinewireline

Bluetooth-Bluetooth-
enabled laptopenabled laptop

Home InternetHome Internet
Access PointAccess Point

Palm OS Bluetooth White Paper Palm Inc. Page 25 of 67

Rev 1.0, December 12, 2000

Feature Palm Device
Connects With:

Required Profiles

Email

Cell Phone Generic Access

Service Discovery

Serial Port

Dial-up Networking

Access Point Generic Access

Service Discovery

Serial Port

LAN Access

PC Generic Access

Service Discovery

Serial Port

LAN Access

Web Clipping

Cell Phone Generic Access

Service Discovery

Serial Port

Dial-up Networking

Access Point Generic Access

Service Discovery

Serial Port

LAN Access

PC Generic Access

Service Discovery

Serial Port

LAN Access

Mobile Handset
Management

Cell Phone Generic Access

Service Discovery

Serial Port

Dial-up Networking

SMS

Cell Phone Generic Access

Service Discovery

Palm OS Bluetooth White Paper Palm Inc. Page 26 of 67

Rev 1.0, December 12, 2000

Feature Palm Device
Connects With:

Required Profiles

Serial Port

Dial-up Networking

Beaming

Other Palm devices Generic Access

Service Discovery

Object Push Profile

HotSync Operation

PC Generic Access

Service Discovery

Serial Port

Dial-up Networking

Cell Phone Generic Access

Service Discovery

Serial Port

Dial-up Networking

Access Point Generic Access

Service Discovery

Serial Port

Game Server

Another Palm Generic Access

Service Discovery

Table 8 – Bluetooth Feature Relationships

Figure 5 illustrates the high level relationship between the Bluetooth stack and the Palm
OS. The Bluetooth Developer API provides a level of abstraction between the developer
and the Bluetooth stack API. BtTransIF provides a level of abstraction between the
Bluetooth hardware and the stack. Details of the BtTransIF will be published in the HDK.

Palm

Rev 1

Figu

Bluetooth Stack

Bluetooth Library

Bluetooth VDVR

BT Developer

RFCOMM SDP ME

Serial Manager

Serial

App

Tel.

Mgr

Tel. App Hot-
Sync

PPP

NetLib

IP
App

“Beaming”

App

Bluetooth

Aware App

Bt Exchange

Exchange

P
L2CA
OS Bluetooth White Paper Palm Inc. Page 27 of 67

.0, December 12, 2000

re 5 – Overall Bluetooth Protocol Stack Architecture

Physical Transport Driver

HCI Transport Library
Bt Transport

Palm OS Bluetooth White Paper Palm Inc. Page 28 of 67

Rev 1.0, December 12, 2000

5.1 DEVELOPING BLUETOOTH ENABLED APPLICATIONS

The Palm OS will expose Bluetooth through multiple interfaces, allowing the application
developer to choose the interface that is best suited for the task at hand. Bluetooth
development will be supported through the Serial Manager via the Bluetooth Serial Driver
for COM emulation, through the Exchange Manager via the Bluetooth Exchange Library for
object transfer, as well as through the Bluetooth Developer API. NetLib, or IP, usage will
also be supported, with Bluetooth acting as a transport to a network-enabled phone or LAN
Access Point. Development of Bluetooth applications must be done on Palm OS v4.0 or
higher.

Palm OS Bluetooth White Paper Palm Inc. Page 29 of 67

Rev 1.0, December 12, 2000

6 Bluetooth Developer API Description

The Bluetooth Developer API allows developers to write Bluetooth enabled applications.
The API is asynchronous, meaning that the API returns immediately instead of blocking to
wait for a response from the remote device or local radio module. The operation completes
in the background, and the application is notified through an event sent to and processed
by a registered callback procedure. Events initiated from remote devices (such as receiving
data) are also handled by registered callback procedures. Events are divided into two
categories:

1. Management events for ACL links and global Bluetooth settings.

2. Socket events for communication through RFCOMM, L2CAP, and SDP.

6.1 LIBRARY FUNCTIONS

6.1.1 BtLibOpen

Purpose:

Opens and initializes the Bluetooth library.

Prototype:

Err BtLibOpen(UInt16 btLibRefNum)

Parameters:

 ->brLibRefNum Reference number of the Bluetooth library

Result:

Returns one of the following values:

errNone No error.

btLibErrAlreadyOpen

The library was already open, and the open count was simply incremented. This is not an
error condition.

btLibErrOutOfMemory

There is not enough memory available to open the library.

Comments:

Palm OS Bluetooth White Paper Palm Inc. Page 30 of 67

Rev 1.0, December 12, 2000

Applications must call this function before using the Bluetooth library. If the Bluetooth library
was already open, BtLibOpen increments its open count. Otherwise, it opens the library,
initializes it, and starts up the protocol stack component of the library.

6.1.2 BtLibClose

Purpose:

Closes the Bluetooth Library. Closes existing connections, save the current accessible
mode, sets mode to connectable only.

Prototype:

Err BtLibClose(UInt16 btLibRefNum)

Parameters:

 ->brLibRefNum Reference number of the Bluetooth Library

Returns one of the following values:

errNone

No error.

btLibErrNotOpen

Library was not open.

BtLibErrStillOpen

The library’s open count was decremented, but the library was not closed because another
process is using it. This is not an error condition.

Comments:

Applications must call this function when they no longer need the Bluetooth library. If the
Bluetooth library open count is greater than 1 before this call is made, the count is
decremented and btLibErrStillOpen is returned. If the open count was 1, the library is shut
down.

6.1.3 BtLibSleep

Purpose:

Palm OS Bluetooth White Paper Palm Inc. Page 31 of 67

Rev 1.0, December 12, 2000

Automatically called when the Palm OS goes to sleep. Closes existing connections.
Change accessible mode to connectable only.

Prototype:

Err BtLibSleep(UInt16 btLibRefNum)

Parameters:

 ->brLibRefNum Reference number of the Bluetooth library

Result:

Returns one of the following values:

errNone

No error.

6.1.4 BtLibWake

Purpose:

Automatically called when the Palm OS wakes up. Change accessible mode to
connectable and discoverable.

Prototype:

Err BtLibWake(UInt16 btLibRefNum)

Parameters:

 ->brLibRefNum Reference number of the Bluetooth library

Result:

Returns one of the following values:

0

No error.

6.2 MANAGEMENT ENTITY FUNCTIONS

The Management Entity (ME) APIs are used for discovery, ACL links, and global Bluetooth
settings.

Palm OS Bluetooth White Paper Palm Inc. Page 32 of 67

Rev 1.0, December 12, 2000

6.2.1 BtLibRegisterManagementNotification

Purpose:

Registers a callback function to process events generated by the Management Entity
functions.

Prototype:

Err BtLibRegisterManagementNotification(UInt16 btLibRefNum, BtLibNotifyProcPtr
callbackP, Uint32 refCon)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> callbackP A pointer to an application-defined callback procedure.
Cannot be NULL, must be defined.

-> refCon Application-defined data to pass to the event handler.

Result:

Returns one of the following values:

btLibErrNoError

The callback was registered successfully.

btLibErrParamError

An invalid parameter was passed in.

Callback Events:

None

Comments:

This function registers a callback function that will process events asynchronously
generated by the ME. For examples of the callback events that might be received, see the
Callback Events sections of each of the function descriptions in this section.

6.2.2 BtLibUnRegisterManagementNotification

Purpose:

Unregisters previously registered ME callbacks. In general, applications should unregister
the callback management before terminating.

Palm OS Bluetooth White Paper Palm Inc. Page 33 of 67

Rev 1.0, December 12, 2000

Prototype:

Err BtLibUnRegisterManagementNotification(UInt16 btLibRefNum, BtLibNotifyProcPtr
callbackP)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> callbackP The callback procedure to unregister.

Result:

Returns one of the following values:

btLibErrNoError

The callback unregistered successfully.

btLibErrParamError

An invalid parameter was passed in.

Callback Event:

None

6.2.3 BtLibStartInquiry

Purpose:

This function starts a Bluetooth inquiry. This is an asynchronous call. An event is generated
whenever a device is discovered.

Prototype:

Err BtLibStartInquiry(UInt16 btLibRefNum, UInt8 timeOut, UInt8 maxResp);

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> timeOut Maximum number of seconds before the Inquiry is halted.
The maximum is 60 Seconds. Because of the constants
defined within the Bluetooth specification, the time value is
be rounded up to nearest multiple of 1.28 seconds. Pass
NULL to use the default value specified by the generic
access profile (currently, ~10 seconds).

-> maxResp The maximum number of responses. Responses may not
be unique.

Palm OS Bluetooth White Paper Palm Inc. Page 34 of 67

Rev 1.0, December 12, 2000

Result:

Returns one of the following values:

btLibErrPending

Success. The results will be returned through callback events.

btLibErrBusy

An inquiry is already in progress.

Callback Events:

The following events will be generated:

BtLibManagementEventInquiryResult

Occurs every time a device is discovered.

BtLibManagementEventInquiryComplete

Occurs when the inquiry is complete.

Comments:

The function performs a low-level Bluetooth inquiry, as opposed to a full device discovery.
This function only returns the Bluetooth address and the class of the discovered device.

6.2.4 BtLibCancelInquiry

Purpose:

This function cancels a Bluetooth inquiry in process.

Prototype:

Err BtLibCancelInquiry(UInt16 btLibRefNum);

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

Result:

Returns one of the following values:

Palm OS Bluetooth White Paper Palm Inc. Page 35 of 67

Rev 1.0, December 12, 2000

btLibErrPending

Success. The results will be returned an event callback.

btLibErrNotInProgress

No inquiry is in progress to be cancelled.

Callback Events:

The following events will be generated:

BtLibManagementEventInquiryCanceled

Occurs to confirm that an inquiry has been cancelled.

Comments:

The function will cancel inquiries initiated using BtLibStartInquiry. It does not cancel
Bluetooth discoveries initiated using either BtLibDiscoverSingleDevice or
BtLibDiscoverMultipleDevices blocking calls. These can only be cancelled by the user
using the Cancel key.

6.2.5 BtLibDiscoverSingleDevice

Purpose:

This blocking call performs a full discovery for an application, including name and feature
retrieval and testing. This function takes over the UI and presents a choice box to the user,
allowing the user to select one device from the list of devices that were discovered.

Prototype:

Err BtLibDiscoverSingleDevice(UInt16 btLibRefNum, Char* instructionTxt,
BtLibClassOfDeviceType* deviceFilterList, UInt8 deviceFilterListLen,
BtLibDeviceAddressType *selectedDeviceP, Boolean addressAsName, Boolean
showLastList);

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> instructionTxt The text displayed at the top of the selection box. Pass
NULL to display the default text.

-> deviceFilterList Array of BtLibClassOfDeviceTypes. This function checks
each element in this list against the remote device's
BtLibClassOfDeviceType value. Any match in the list is
considered a success. Pass NULL to skip this test, so that

Palm OS Bluetooth White Paper Palm Inc. Page 36 of 67

Rev 1.0, December 12, 2000

all discovered devices are returned.

->

deviceFilterListLen

The number of elements in deviceFilterList.

<- selectedDeviceP Pointer to an allocated BtLibDeviceAddressType. The
device address that the user selected is returned here.

-> addressAsName If true, show the remote device’s Bluetooth addresses
instead of friendly names. This option is used for
debugging purposes.

-> showLastList If true, causes all other parameters to be ignored and
displays the same list as the previous call to
BtLibDiscoverSingleDevice. Calling BtLibStartInquiry in
beetween calls to BtLibDiscoverSingleDevice may cause
only a partial list to be displayed.

Result:

Returns one of the following values:

btLibErrNoError

Success

Callback Events:

None

Comments:

6.2.6 BtLibDiscoverMultipleDevices

Purpose:

This blocking call performs a full discovery for an application, including name and feature
retrieval and testing. This function takes over the UI and presents a choice box to the user,
allowing the user to select multiple devices from the list of devices that were discovered.

Prototype:

Err BtLibDiscoverMultipleDevices(UInt16 btLibRefNum, Char* instructionTxt, Char*
buttonTxt, BtLibClassOfDeviceType* deviceFilterList, UInt8 deviceFilterListLen, Uint8
*numDevicesSelected, BtLibDeviceAddressType *selectedDeviceP, Boolean
addressAsName, Boolen considerAllSelected, Boolen showLastList);

Parameters:

Palm OS Bluetooth White Paper Palm Inc. Page 37 of 67

Rev 1.0, December 12, 2000

-> btLibRefNum The reference number for the Bluetooth Library.

-> instructionTxt The text displayed at the top of the selection box. Pass
NULL to display the default text.

-> buttonTxt Text for the Done button. Pass NULL to display the default
text.

-> deviceFilterList Array of BtLibClassOfDeviceTypes. This function checks
each element in this list against the remote device's
BtLibClassOfDeviceType value. Any match in the list is
considered a success. Pass NULL to skip this test, so that
all discovered devices are returned.

->deviceFilterListLen The number of elements in deviceFilterList.
<- numDevicesSelected The number of devices selected. The application should

call BtLibGetSelectedDevices to get the actual device list.

-> addressAsName If true, show the remote device’s Bluetooth addresses
instead of friendly names. This option is used for
debugging purposes.

-> considerAllSelected If true, skips the user selection phase of the discovery and
causes all eligible devices to be considered selected. This
parameter isuseful for using the call’s filtering capabilities
in an unattended setting.

-> showLastList If true, causes all other parameters to be ignored and
displays the same list as the previous call to
BtLibDiscoverMultipleDevice. Calling BtLibStartInquiry in
beetween calls to BtLibDiscoverMultipleDevice may cause
only a partial list to be displayed.

Result:

Returns one of the following values:

btLibErrNoError

Success

Callback Events:

None

Comments:

Use BtLibGetSelectedDevices to retrieve the list of devices that the user selected.

6.2.7 BtLibGetSelectedDevices

Purpose:

Gets the list of devices selected during the last BtLibDiscoverMultipleDevices.

Palm OS Bluetooth White Paper Palm Inc. Page 38 of 67

Rev 1.0, December 12, 2000

Prototype:

Err BtLibGetSelectedDevices(UInt16 btLibRefNum, UInt8 numDevices,

BtLibDeviceAddressType* selectedDeviceArray);

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

<- numDevices The number of devices selected during the last
BtLibDiscoverMultipleDevices.

<-selectedDeviceArray Pointer to array of devices selected.

Result:

Returns one of the following values:

btLibErrNoError

Success

Callback Events:

None

6.2.8 BtLibRemoteDeviceGetName

Purpose:

Get the remote device's name.

Prototype:

Err BtLibRemoteDeviceGetName(UInt16 btLibRefNum, BtLibDeviceAddressType
remoteDeviceP, BtLibFriendlyNameType* nameP, Boolean forceRemote);

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> remoteDeviceP The address of the device whose name is desired.

<-> nameP Memory and size of memory for the name to be stored.
Actual length of name (including null terminator) is
returned.

-> forceRemote Retrieve the name from the remote device rather than
from the local cache.

Result:

Palm OS Bluetooth White Paper Palm Inc. Page 39 of 67

Rev 1.0, December 12, 2000

Returns one of the following values:

btLibErrPending

The results will be returned through an event.

btLibErrNoError

The name structure was successfully retrieved from the cache.

Callback Events:

BtLibManagementEventNameResult

This event with a status equal to 0 signals that the friendly name was retrieved from the
cache successfully.

Comments:

The Bluetooth library keeps a small cache of device names. This routine first checks the
cache for a name. If the name is in the cache, the value is returned immediately in the
nameP parameter. If the name is not in the cache or if the forceRemote flag is true, the
function queries the remote device for its name, forming a temporary ACL connection if one
is not already in place. In this case, the function returns a btLibErrPending error, and the
name is returned by generating a BtLibManagementEventNameResult event.

6.2.9 BtLibLinkCreate

Purpose:

Create a Bluetooth Asynchronous Connectionless Link (ACL).

Prototype:
Err BtLibLinkCreate(UInt16 btLibRefNum, BtLibDeviceAddressType remoteDeviceArray,
UInt8 remoteDeviceCount)

Parameters:

-> btLibRefNum The reference number for the bluetooth library.
-> remoteDeviceArray An array of remote device addresses to connect with.
->
remoteDeviceCount

Size of the remoteDevices array (maximum 7).

Result:

Returns one of the following values:

btLibErrPending

Success. The results will be returned through a callback event.

Palm OS Bluetooth White Paper Palm Inc. Page 40 of 67

Rev 1.0, December 12, 2000

btLibErrorSlave

The device is already a slave in a pre-existing connection and cannot create a new
connection.

btLibTooMany

The maximum allowed number of ACL Links has been reached.

Callback Events:

BtLibManagementEventACLConnectComplete

This event with a status equal to 0 signals that the ACL link is up.

Comments:

Attempts to create an ACL link to each of the devices in the remoteDevices array, forming a
piconet. When the connection is established, the
BtLibManagementEventACLConnectComplete event is generated.

6.2.10 BtLibLinkDisconnect

Purpose:

Disconnects an existing ACL Link. Result returned through event.

Prototype:

Err BtLibLinkDisconnect(UInt16 btLibRefNum, BtLibDeviceAddressType remoteDeviceP)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> remoteDeviceP The address of the remote device.

Result:

Returns one of the following values:

btLibErrPending

Success. The results will be returned through a callback event.

btLibErrNoConnection

No link exists.

Callback Events:

Palm OS Bluetooth White Paper Palm Inc. Page 41 of 67

Rev 1.0, December 12, 2000

BtLibManagementEventACLDisconnect

This event signals that the link has disconnected.

6.2.11 BtLibLinkSetState

Purpose:

Set the state of an ACL link.

Prototype:

Err BtLibLinkSetState(UInt16 btLibRefNum, BtLibDeviceAddressType remoteDeviceP,
BtLibLinkPrefsEnum pref, void* linkState, UInt16 linkStateSize)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> remoteDeviceP The address of the remote device (identifies ACL link).

-> pref Link preference to set (see LINK PREFERENCES
section).

-> linkState Value corresponding to preference (see LINK
PREFERENCES section).

-> linkStateSize Size in bytes of linkState.

Result:

Returns one of the following values:

btLibErrPending

Success.The results will be returned through a callback event.

Callback Events:

BtLibManagementEventAuthenticated

Signals that the link has been authenticated.

BtLibManagementEventEncryptionChange

Signals an encryption change.

BtLibManagementEventRoleChange

Signals a role change from master to slave.

Comments:

Palm OS Bluetooth White Paper Palm Inc. Page 42 of 67

Rev 1.0, December 12, 2000

Applications use this function to set the state of an ACL link. Which event is generated in
response to this function depends on how the state was changed. This function is not used
to request information about the ACL state; to request information, use BtLibLinkGetState.

6.2.12 BtLibLinkGetState

Purpose:

Get the state of an ACL link.

Prototype:

Err BtLibLinkGetState(UInt16 btLibRefNum, BtLibDeviceAddressTypePtr remoteDeviceP,
BtLibLinkPrefsEnum pref, void* linkState, UInt16 linkStateSize)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> remoteDeviceP The address of the remote device (identifies ACL link).

-> pref Link preference to retrieve (see LINK PREFERENCES
section).

<- linkState Value corresponding to preference (see LINK
PREFERENCES section).

<- linkStateSize Size in bytes of linkState.

Result:

Returns one of the following values:

btLibErrNoError

Success. The linkState variable has been filled in.

Callback Events:

None

6.2.13 BtLibSetGeneralPreference

Purpose:

Set the general management preferences.

Prototype:

Err BtLibGeneralPreferenceSet(UInt16 btLibRefNum, BtLibGeneralPrefEnum pref, void*
prefValue, UInt16 prefValueSize)

Palm OS Bluetooth White Paper Palm Inc. Page 43 of 67

Rev 1.0, December 12, 2000

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> pref Link preference to set (see LINK PREFERENCES
section).

-> prefValue Value corresponding the preference (see GENERAL
PREFERENCES section).

-> linkStateSize Size in bytes of prefValue.

Result:

Return one of the following values:

btLibErrNoError

Success

btLibErrPending

The results will be returned through a callback event.

Callback Events:

BtLibManagementEventAccesibleChange

Signals that accessibility has been changed

BtLibManagementEventLocalName

Signals that the name has been changed.

Comments:

6.2.14 BtLibGetGeneralPreference

Purpose:

Get the general management preferences

Prototype:

Err BtLibGeneralPreferenceGet(UInt16 btLibRefNum, BtLibGeneralPrefEnum pref, void*
prefValue, UInt16 prefValueSize)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

Palm OS Bluetooth White Paper Palm Inc. Page 44 of 67

Rev 1.0, December 12, 2000

-> pref Link preference to get (see LINK PREFERENCES
section).

-> prefValue Memory to store prefValue (see GENERAL
PREFERENCES section).

-> prefValueSize Size in bytes of prefValue.

Result:

Return one of the following values:

btLibErrNoError

Success. The preference is returned in prefValue.

Callback Events:

None

6.2.15 Link Preferences:

The following table lists the link preferences and corresponding value types for
BtLibLinkSetState and BtLibLinkGetState functions.

Pref LinkState

BtLibLinkPref_Authenticated Boolean

BtLibLinkPref_Encrypted Boolean

BtLibLinkPref_LinkRole BtLibConnectionRoleEnum

BtLibLinkPref_RSSI Int8: Signal strength, read-only, range –

128 <= n <= 127, units dB

Table 9 – Link Preferences

6.2.16 General Preferences

The following table lists general preferences and corresponding value types for
BtLibGeneralPreferenceSet and BtLibGeneralPreferenceGet functions:

Pref PrefValue

BtLibPref_LocalName BtLibFriendlyNameType

BtLibPref_ConnectedAccessible BtLibAccessiblityInfoType

(Allow inquiry and page scan while in a
connection, has data bandwidth penality.

Palm OS Bluetooth White Paper Palm Inc. Page 45 of 67

Rev 1.0, December 12, 2000

Pref PrefValue

The default is not to allow inquiry and page
scan).

BtLibPref_UnConnectedAccessible BtLibAccessiblityInfoType

(In general, only the OS should set
BtLibPref_UnConnectedAccessible)

BtLibPref_BtEnabled Boolean

(In general, only the OS should set
BtLibPref_BtEnabled)

BtLibPref_BecomeMasterOfInbound Boolean

(Force the master/slave switch on all
inbound connections if true. The default is
false).

Table 10 – General Preferences

6.3 SOCKETS

The sockets API is used to manage RFCOMM, L2CAP, and SDP communications.

6.3.1 BtLibSocketCreate

Purpose:

Create a socket with foreground notification.

Prototype:

Err BtLibSocketCreate(UInt16 btLibRefNum, BtLibSocketRef* socketRefP,
BtLibNotifyProcPtr callbackP, UInt32 refCon, BtLibProtocolEnum socketProtocol)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

<- socketRefP The returned socket value

-> callbackP The callback procedure used to respond to socket
eventss. Cannot be NULL, must be defined.

-> Refcon Caller-defined data to pass to the callback procedure.

-> socketProtocol The protocol (L2CAP, RFComm, or SDP) to associate with
this socket.

Palm OS Bluetooth White Paper Palm Inc. Page 46 of 67

Rev 1.0, December 12, 2000

Result:

Returns one of the following values:

btLibErrNoError

Success.

btLibErrOutOfMemory

Not enough memory to create the socket.

btLibTooMany

The maximum number of sockets allocated for the system has already been reached.

Callback Events:

None

Comments:

Before terminating, applications should destroy all sockets that they have created using
BtLibSocketClose.

6.3.2 BtLibSocketClose

Purpose:

Closes a socket, frees associated resources, and kills all connections.

Prototype:

Err BtLibSocketClose(UInt16 btLibRefNum, BtLibSocketRef socket)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> socket The socket to close.

 Result:

Returns one of the following values:

btLibErrNoError

Success.

Callback Events:

None

Palm OS Bluetooth White Paper Palm Inc. Page 47 of 67

Rev 1.0, December 12, 2000

Comments:

6.3.3 BtLibSocketListen

Purpose:

Set up an L2CAP or RFCOMM socket as a listener.

Prototype:

Err BtLibSocketListen(UInt16 btLibRefNum, BtLibSocketRef socket,
BtLibSocketListenInfoType *listenInfo)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> socket A listener socket.

-> listenInfo Protocol-specific listening information.

Result:

Returns one of the following values:

btLibErrNoError

Socket listening for incoming connections.

Callback Events:

BtLibSocketEventOpenRequest

This event is sent when a remote device initiates a connection on this socket. Respond to
this event with a call to BtLibSocketConnectionRespond on the listener socket to accept or
reject the connection.

Comments:

6.3.4 BtLibSocketConnect

Purpose:

Create an outbound L2CAP or RFCOMM connection.

Prototype:

Palm OS Bluetooth White Paper Palm Inc. Page 48 of 67

Rev 1.0, December 12, 2000

Err BtLibSocketConnect(UInt16 btLibRefNum, BtLibSocketRef socket,
BtLibSocketConnectInfoType* connectInfo);

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> socket A socket reference number.

-> listenInfo Bluetooth device address and protocol-specific connection
information.

Result:

Return one of the following values:

btLibErrPending

Success. The results will be returned through an event.

btLibErrNoAclLink

An ACL link for the remote device does not exist

Callback Events:

BtLibSocketEventConnectedOutbound

This event with a status of zero signals success of the connection. A non-zero status gives
a reason for failure.

BtLibSocketEventDisconnected

If the connection fails or if connection establishment is successful then this event is
broadcast when the channel disconnects.

BtLibSocketEventData

If connection establishment is successful, then this event is broadcast if the remote device
sends data.

6.3.5 BtLibSocketConnectionRespond

Purpose:

Accept or reject an in-bound connection on a given listener socket. Called in response to
BtLibSocketEventConnectRequest event delivered to a listerner socket. A new connection
socket is returned in the btLibSocketEventConnectedInbound event to the listerner socket
after BtLibSocketConnectionRespond is called.

Prototype:

Palm OS Bluetooth White Paper Palm Inc. Page 49 of 67

Rev 1.0, December 12, 2000

Err BtLibSocketConnectionRespond(UInt16 btLibRefNum, BtLibSocketRef socket,
Boolean accept)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> socket A listener socket reference number.

-> accept true means accept connection. false means reject
connection.

Result:

Returns one of the following values:

btLibErrNoError

Success (if connection is rejected then no notification of the completion of the rejection is
necessary)

btLibErrPending

Success. The results will be returned through a callback event.

btLibErrNotListening

The socket passed in is not listening.

btLibErrNoAclLink

An ACL link for the remote device does not exist

Callback Events:

BtLibSocketEventConnectedInbound

The connection was made. Contains the reference for the new connection socket (which
will use the same callback as the listener)

BtLibSocketEventDisconnected

The connection failed.

6.3.6 BtLibSocketSend

Purpose:

Sends data over a connected L2CAP or RFCOMM socketCompletion returned through
notification.

Palm OS Bluetooth White Paper Palm Inc. Page 50 of 67

Rev 1.0, December 12, 2000

Prototype:

Err BtLibSocketSend(UInt16 btLibRefNum, BtLibSocketRef socket, UInt8 *data, UInt32
dataLen)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> socket A socket reference number.

-> data Pointer to data to send.

-> dataLen Length of data to send. This value must be less than the
MTU for the socket.

Result:

Returns one of the following values:

btLibErrPending

Success. The results will be returned through an event.

btLibErrBusy

A send is already in process.

btLibErrNoAclLink

An ACL link for the remote device does not exist

Callback Events:

BtLibSocketEventSendComplete

This event, with a status of 0, signals that the data has been successfully transmitted.

6.3.7 BtLibSocketGetInfo

Purpose:

Retrieves information for a currently open socket.

Prototype:

Err BtLibSocketGetInfo(UInt16 btLibRefNum, BtLibSocketRef socket,
BtLibSocketInfoEnum infoType, void * valueP, UInt32 valueSize);

Parameters:

Palm OS Bluetooth White Paper Palm Inc. Page 51 of 67

Rev 1.0, December 12, 2000

-> btLibRefNum The reference number for the Bluetooth Library.

-> socket A socket reference number

-> infoType Type of information to retrieve (see SOCKET INFO
section).

<- valueP Memory in which to store result (see SOCKET INFO
section).

-> valueSize Size in bytes of valueP.

Result:

Returns one of the following values:

btLibErrNoError

Success. Results are placed in valueP.

Callback Events:

None

6.3.8 Socket Information

The following table lists information types and corresponding value types for
BtLibSocketGetInfo function:

InfoType valueP

BtLibSocketInfo_Protocol BtLibProtocolEnum*

BtLibSocketInfo_RemoteDeviceAddress BtLibDeviceAddressType*

BtLibSocketInfo_SendPending Boolean*

BtLibSocketInfo_ChannelMtu UInt32

BtLibSocketInfo_L2CapPsm BtLibL2CapPsmType*

BtLibSocketInfo_L2CapChannel BtLibL2CapChannelIDType*

BtLibSocketInfo_RfCommChannelId BtLibRfCommChannelType*

BtLibSocketInfo_SdpServiceRecordHandle BtLibSdpRemoteServiceRecordHandle*

Table 11 – Socket Information

6.4 SERVICE DISCOVERY PROTOCOL (SDP)

Palm OS Bluetooth White Paper Palm Inc. Page 52 of 67

Rev 1.0, December 12, 2000

The Service Discovery Protocol (SDP) API is used create and advertise service records to
remote devices and to discover services available on remote devices. Only one
outstanding query at a time is allowed per socket.

6.4.1 BtLibSdpGetServiceRecordsByServiceClass

Purpose:

Get the service record handles for service classes advertised on a remote device.

Prototype:

Err BtLibSdpGetServiceRecordsByServiceClass(UInt16 btLibRefNum, BtLibSocketRef
socket, BtLibDeviceAddressType* rDev, BtLibSdpUUIDType* uuidList, UInt16 uuidListLen,
BtLibSdpRemoteServiceRecordHandle* serviceRecordList, UInt32 numSrvRec);

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> socket An SDP socket.

-> rDev The remote device to query.

-> uuidList List of UUIDs identifying service classes that the remote
service should support.

-> uuidListLen Number of elements in the uuidList. The maximum value is
12

<-
serviceRecordList

Array to store results of query.

<-> numSrvRec Number of service records that serviceRecordList can
store. This value is sent to the SDP server so it can limit
the number of responses. This value is set upon receiving
BTLibSockettEventSdpQueryResponse to the actual
number of record handles received.

Result:

Returns one of the following values:

btLibErrPending

Success. The results will be returned through an event.

Callback Events:

BtLibSocketEventSdpServiceRecordHandle

Palm OS Bluetooth White Paper Palm Inc. Page 53 of 67

Rev 1.0, December 12, 2000

This event with a status of btLibErrNoError signals that the serviceRecordList and
numSrvRec has been filled in with the SDP response results. Otherwise, the eventData is
not valid because the SDP operation did not complete successfully.

Comments:

Before using this function, use BtLibSdpServiceRecordMapRemote to associate a
BtLibSdbRemoteServiceRecordHandle with a remote device. The information about the
remote device is returned in this handle.

6.4.2 BtLibSdpServiceRecordMapRemote

Purpose:

Associates an SDP record with a socket and a remote device so that
BtLibSdpGetAttributeInServiceRecord can be called to get remote attributes.

Prototype:

Err BtLibSdpServiceRecordMapRemote (UInt16 btLibRefNum, BtLibSocketRef socket,
BtLibDeviceAddressType* rDev, BtLibSdpRemoteServiceRecordHandle remoteHandle,
BtLibSdpRecordHandle recordH)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> socket An SDP socket.

-> rDev The device to query.

-> remoteHandle Remote service record handle.

-> recordH An empty SDP record.

Result:

Returns one of the following values:

btLibErrNoError

Indicates that the mapping was successful.

Callback Events:

None

6.4.3 BtLibSdpServiceRecordCreate

Palm OS Bluetooth White Paper Palm Inc. Page 54 of 67

Rev 1.0, December 12, 2000

Purpose:

Create an SDP Record from existing data or from no data at all.

Prototype:

Err BtLibSdpServiceRecordCreate (UInt16 btLibRefNum, char* sdpData, UInt16
sdpDataSize, BtLibSdpRecordHandle* recordH)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> sdpData Raw SDP data to initialize the new record (or NULL).

-> sdpDataSize Size in bytes of sdpData.

<- recordH Handle to the newly created service record.

Result:

Returns one of the following values:

btLibErrNoError

Success.

Callback Events:

None

6.4.4 BtLibSdpServiceRecordDestroy

Purpose:

Destroy an SDP record (frees memory).

Prototype:

Err BtLibSdpServiceRecordDestroy (UInt16 btLibRefNum, BtLibSdpRecordHandle recordH)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> recordH SDP record to be destroyed.

Result:

Returns one of the following values:

Palm OS Bluetooth White Paper Palm Inc. Page 55 of 67

Rev 1.0, December 12, 2000

btLibErrNoError

Success.

Callback Events:

None

6.4.5 BtLibSdpServiceRecordStartAdvertising

Purpose:

Advertise a service record so that the service can be discovered by remote devices.

Prototype:

Err BtLibSdpServiceRecordStartAdvertising (UInt16 btLibRefNum, BtLibSdpRecordHandle
recordH)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> recordH The SDP record to be advertised.

Result:

Returns one of the following values:

btLibErrNoError

Success

btLibErrRemoteRecord

A remote record was passed in recordH. The record must be local.

btLibErrAdvertised

The record is already advertised.

Callback Events:

None

Palm OS Bluetooth White Paper Palm Inc. Page 56 of 67

Rev 1.0, December 12, 2000

6.4.6 BtLibSdpServiceRecordStopAdvertising

Purpose:

Stop advertising an SDP record.

Prototype:

Err BtLibSdpServiceRecordStopAdvertising (UInt16 btLibRefNum, BtLibSdpRecordHandle
recordH)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> recordH The SDP record to stop advertising.

Result:

Returns one of the following values:

btLibErrNoError

Indicates that the SDP record is no longer advertised.

btLibErrRemoteRecord

A remote record was passed in recordH. The record must be local.

Callback Events:

None

6.4.7 BtLibSdpServiceRecordSetAttributesForSocket

Purpose:

Sets up a basic SDP record for L2CAP and RFCOMM listener sockets.

Prototype:

Err BtLibSdpServiceRecordSetAttributesForSocket(UInt16 btLibRefNum, BtLibSocketRef
socket, BtLibSdpUUIDType* serviceUUIDList, UInt8 uuidListLen, Char* serviceName,
UInt16 serviceNameLen, BtLibSdpRecordHandle recordH);

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

Palm OS Bluetooth White Paper Palm Inc. Page 57 of 67

Rev 1.0, December 12, 2000

-> socket The socket reference number.

-> serviceUUIDList List of UUIDs for the service record.

-> uuidListLen Length of serviceUUIDList. A maximum of 12 entries is
allowed.

-> serviceName Name of the service (English only).

-> serviceNameLen Size in bytes of serviceName.

-> recordH The service record to be set up.

Result:

Return one of the following values:

btLibErrNoError

Success.

btLibErrRemoteRecord

A remote record was passed in recordH. The record must be local.

btLibErrAdvertised

An advertised record was passed in recordH. The record must not be advertised.

Callback Events:

None

6.4.8 BtLibSdpServiceRecordSetAttribute

Purpose:

Sets a specific attribute type's value for a given record. This function only works on SDP
records that are local and not currently advertised.

Prototype:

Err BtLibSdpServiceRecordSetAttribute (UInt16 btLibRefNum, BtLibSdpRecordHandle
recordH, BtLibSdpAttributeEnum attributeID, BtLibSdpAttributeDataType *attributeValues,
UInt16 listNumber, UInt16 listEntry);

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> recordH An SDP record.

Palm OS Bluetooth White Paper Palm Inc. Page 58 of 67

Rev 1.0, December 12, 2000

-> attributeID The attribute to set.

-> attributeValues The value for the attribute.

-> listNumber Identifies which list to use (usually 0). Ignored for non
ProtocolDesriptorListEntry attributes.

-> listEntry The item to get in the list. Ignored for non-list attributes.

Result:

Returns one of the following values:

btLibErrNoError

Success.

btLibErrRemoteRecord

A remote record was passed in recordH. The record must be local.

btLibErrAdvertised

An advertised record was passed in recordH. The record must not be advertised.

Callback Events:

None

6.4.9 BtLibSdpServiceRecordGetAttribute

Purpose:

Get a specific attribute's value for a given record.

Prototype:

Err BtLibSdpServiceRecordGetAttribute (UInt16 btLibRefNum, BtLibSdpRecordHandle
recordH, BtLibSdpAttributeIDType attributeID, BtLibSdpAtributeType* attributeValues,
UInt16 listNumber, UInt16 listEntry);

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> recordH The SDP record

-> attributeID The attribute to retrieve.

<- attributeValues The attribute’s value upon return.

-> listNumber Identifies which list to use (usually 0). Ignored for non
ProtocolDescriptorListEntry attributes.

Palm OS Bluetooth White Paper Palm Inc. Page 59 of 67

Rev 1.0, December 12, 2000

-> listEntry The item to get in the list. Ignored for non-list attributes.

Result:

Returns one of the following values:

btLibErrNoError

Success.

btLibErrPending

The requested data is for a remote record. The result will be returned through an event.

btLibErrNoAclLink

The ACL link for the remote device does not exist

Callback Events:

BtLibSocketEventSdpGetAttribute

This event with a status of btLibErrNoError signals that attributeValues has been filled in
with the SDP response results Otherwise the eventData is not valid because the SDP
operation did not complete successfully.

6.4.10 BtLibSdpServiceRecordGetLengthOfStringOrURL

Purpose:

Get the size of a string or URL type of attribute for a given record.

Prototype:

Err BtLibSdpServiceRecordGetLengthOfStringOrURL(UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH, BtLibSdpAttributeIDType attributeID, UInt16* size)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> recordH The SDP record.

-> attributeID The attribute for which to retrieve the size.

<- size The returned size of the attribute.

Result:

Returns one of the following values:

Palm OS Bluetooth White Paper Palm Inc. Page 60 of 67

Rev 1.0, December 12, 2000

btLibErrNoError

Success.

btLibErrPending

The requested data is for a remote record. The result will be returned through an event.

Callback Events:

BtLibSocketEventSdpGetStringLen

This event with a status of btLibErrNoError signals that the size variable has been filled in
with the SDP response results. Otherwise the eventData is not valid because the SDP
operation did not complete successfully.

Comments:

6.4.11 BtLibSdpServiceRecordGetNumListEntries

Purpose:

Get the number of entries in an attribute list, valid for:

• ServiceClassIdListEntry

• ProtocolDescriptorListEntry

• BrowseGroupListEntry

• LanguageBaseAttributeIDListEntry

• ProfileDescriptorListEntry

Prototype:

Err BtLibSdpServiceRecordGetNumListEntries(UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH, BtLibSdpAttributeIDType attributeID, UInt16 listNumber,
UInt16 *numEntries)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> recordH The SDP record.

-> attributeID Attribute for which to retrieve the number of list entries.

-> listNumber Identifies which list to use (usually 0). Ignored for non-
ProtocolDescriptorListEntry attributes.

<- numEntries The number of entries in the list upon return.

Result:

Returns one of the following values:

Palm OS Bluetooth White Paper Palm Inc. Page 61 of 67

Rev 1.0, December 12, 2000

btLibErrNoError

Success

btLibErrPending

The requested data is for a remote record. The result will be returned through an event.

btLibErrNoAclLink

The ACL link for the remote device does not exist.

Callback Events:

BtLibSocketEventSdpGetNumListEntries

This event with a status of btLibErrNoError signals that the numEntries variable has been
filled in with the SDP response results. Otherwise the eventData is not valid because the
SDP operation did not complete successfully.

6.4.12 BtLibSdpServiceRecordGetNumLists

Purpose:

Get the number of lists since there can be more than one protocol descriptor list in an SDP
record. Valid for ProfileDescriptorListEntry.

Prototype:

Err BtLibSdpServiceRecordGetNumLists(UInt16 btLibRefNum, BtLibSdpRecordHandle
recordH, BtLibSdpAttributeIDType attributeID, UInt16 *numLists)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> recordH An SDP record.

-> attributeID The attribute for which to retrieve the number of lists.

<- numLists The number of lists upon return.

Result:

Returns one of the following values:

btLibErrNoError

Palm OS Bluetooth White Paper Palm Inc. Page 62 of 67

Rev 1.0, December 12, 2000

Success.

btLibErrPending

The requested data is for a remote record. The result will be returned through an event.

Callback Events:

BtLibSocketEventSdpGetNumLists

This event with a status of btLibErrNoError signals that the numLists variable has been
filled in with the SDP response results. Otherwise the eventData is not valid because the
SDP operation did not complete successfully.

6.4.13 BtLibSdpServiceRecordSetRawAttribute

Purpose:

Sets the value for any attribute for a given record. This function only works on SDP records
that are local and not currently advertised.

Prototype:

Err BtLibSdpServiceRecordSetRawAttribute (UInt16 btLibRefNum, BtLibSdpRecordHandle
recordH, BtLibSdpRawAttributeIDType attributeID, const UInt8* value, UInt16 valSize)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> recordH The SDP record.

-> attributeID The attribute to set.

-> value Raw SDP attribute data (as it would appear in raw SDP
protocol data).

-> valSize The size in bytes of value.

Result:

Returns one of the following values:

btLibErrNoError

Success.

btLibErrRemoteRecord

The record passed in is associated with a remote service. Only local records are allowed.

Palm OS Bluetooth White Paper Palm Inc. Page 63 of 67

Rev 1.0, December 12, 2000

btLibErrAdvertised

The record passed in is for an advertised served. Only unadvertised records are allowed.

Callback Events:

None

6.4.14 BtLibSdpServiceRecordGetRawAttribute

Purpose:

Retrieves the value of any attribute for a given record.

Prototype:

Err BtLibSdpServiceRecordGetRawAttribute (UInt16 btLibRefNum, BtLibSdpRecordHandle
recordH, BtLibSdpRawAttributeIDType attributeID, Uint8* value, UInt16* valSize)

Parameters:

-> btLibRefNum The reference number for the Bluetooth library.

-> recordH An SDP record.

-> attributeID The attribute to retrieve.

<- value Raw SDP attribute data retrieved (as it would appear in
raw SDP protocol data).

<-> valSize The size of value buffer upon entry. Upon return, constains
the number of bytes in value.

Result:

Returns one of the following values:

btLibErrNoError

Success

btLibErrPending

The requested data is for a remote record. The result will be returned through an event.

btLibErrNoAclLink

The ACL link for the remote device does not exist.

Callback Events:

BtLibSocketEventSdpGetRawAttribute

Palm OS Bluetooth White Paper Palm Inc. Page 64 of 67

Rev 1.0, December 12, 2000

This event with a status of btLibErrNoError signals that the value and valSize variables
have been filled in with the SDP response results. Otherwise, the eventData is not valid
because the SDP operation did not complete successfully.

Comments:

6.4.15 BtLibSdpServiceRecordGetSizeOfRawAttribute

Purpose:

Returns the size of any attribute type for a given record.

Prototype:

Err BtLibSdpServiceRecordGetSizeOfRawAttribute (UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH, BtLibSdpRawAttributeIDType attributeID, UInt16* size)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> recordH The SDP record.

-> attributeID The attribute for which to retrieve the size

<- size The size of the attribute upon return.

Result:

Returns one of the following values:

btLibErrNoError

Success

btLibErrPending

The requested data is for a remote record. The result will be returned through an event.

btLibErrNoAclLink

The ACL link for the remote device does not exist.

Callback Events:

BtLibSocketEventSdpGetRawAttributeSize

This event with a status of btLibErrNoError signals that the size variable has been filled in
with the SDP response results. Otherwise the eventData is not valid because the SDP
operation did not complete successfully.

Palm OS Bluetooth White Paper Palm Inc. Page 65 of 67

Rev 1.0, December 12, 2000

6.5 BLUETOOTH BYTE ORDERING ROUTINES

6.5.1 BtLibHTo/NS/NL/HS/HL

Purpose:

Convert the endianess of integers back and forth between network byte ordering (big
endian) and host byte ordering.

• Convert host Int16 to network Int16.

• Convert host long to network long.

• Convert network Int16 to host Int16

• Convert network long to host long

Convert host byte orders

Prototypes:

Int16 BtLibHToNS (Int16 value)

Int32 BtLibHToNL (Int32 value)

Int16 BtLibNToHS (Int16 value)

Int32 BtLibNToHL (Int32 value)

Convert SDP byte orders (SDP is big endian)

Prototypes:

Int32 Sdp32ToHost32 (Int32 value)

Int16 Sdp16ToHost16 (Int16 value)

Int32 Host32ToSdp32 (Int32 value)

Int16 Host16ToSdp16 (Int16 value)

Convert RFCOMM byte orders (RFCOMM is big endian)

Prototypes:

Int32 RFCOMM32ToHost32 (Int32 value)

Int16 RFCOMM16toHost16 (Int16 value)

Int32 Host32ToRFCOMM32 (Int32 value)

Int16 Host16ToRFCOMM16 (Int16 value)

Palm OS Bluetooth White Paper Palm Inc. Page 66 of 67

Rev 1.0, December 12, 2000

6.6 BLUETOOTH ADDRESS CONVERSION

6.6.1 BtLibAddrBtdToA

Purpose:

Convert 48-bit BtLibAddressType to ASCII colon-seperated form.

Prototype:

Err BtLibAddrBtdToA (UInt16 libRefNum, BtLibDeviceAddressType *btDevP, Char
*spaceP, UInt16 spaceSize);

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> btDevP The address of a Bluetooth device.

<- spaceP Contains the ASCII formatted Bluetooth devices address
upon return.

<-> spaceSize Size of spaceP in bytes upon entry. Upon return, contains
the actual number of bytes used in spaceP excluding the
null terminator.

Result:

Return one of the following values:

btLibErrNoError

Success.

Callback Events:

None

6.6.2 BtLibAddrBtdToA

Purpose:

Convert a colon-separated ASCII string Bluetooth device address into a 48-bit
BtLibDeviceAddressType.

Palm OS Bluetooth White Paper Palm Inc. Page 67 of 67

Rev 1.0, December 12, 2000

Prototype:

Err BtLibAddrAToBtd (UInt16 libRefNum, const Char *a, BtLibDeviceAddressType *btDevP)

Parameters:

-> btLibRefNum The reference number for the Bluetooth Library.

-> a String containing ASCII colon-seperated Bluetooth device
address.

<- btDevP Contains the converted Bluetooth device address upon
return.

Result:

Returns one of the following values:

btLibErrNoError

Success

Callback Events:

None

	Introduction
	Palm Objectives
	Functional Features
	Bluetooth Features Defined
	Bluetooth Protocol Stack
	Bluetooth Core Protocols
	Baseband
	Audio
	Link Manager Protocol
	Logical Link Control and Adaptation Protocol
	Service Discovery Protocol

	Cable Replacement Protocol
	RFCOMM

	Telephony Control Protocol
	Telephony Control – Binary
	Telephony Control – AT Commands
	Palm OS Telephony Control Support

	Adopted Protocols
	PPP
	TCP/UDP/IP
	OBEX Protocol
	Content Formats

	Bluetooth Profiles
	Bluetooth Security
	Encryption
	Authentication
	Authorization
	Supported Security Modes
	Secure Link Establishment
	Unknown Device
	Paired Device

	Device Discovery
	Piconet Support
	Bluetooth Virtual Serial Port
	Palm OS Usage of the Virtual Serial Driver
	Third Party Application Usage of the Virtual Driver

	Bluetooth HotSync Support
	PC-Based HotSync Operations
	Access Point HotSync Operations
	Cell Phone HotSync Operations

	Telephony Support
	Exchange Library Support
	Radio Power Management

	Bluetooth Hardware Subsystem
	Bluetooth Radio Transmitter
	Host Control Interface (HCI) Transport Layer
	Palm Bluetooth Reference Hardware

	Functional Relationships
	Developing Bluetooth Enabled Applications

	Bluetooth Developer API Description
	Library Functions
	BtLibOpen
	BtLibClose
	BtLibSleep
	BtLibWake

	Management Entity Functions
	BtLibRegisterManagementNotification
	BtLibUnRegisterManagementNotification
	BtLibStartInquiry
	BtLibCancelInquiry
	BtLibDiscoverSingleDevice
	BtLibDiscoverMultipleDevices
	BtLibGetSelectedDevices
	BtLibRemoteDeviceGetName
	BtLibLinkCreate
	BtLibLinkDisconnect
	BtLibLinkSetState
	BtLibLinkGetState
	BtLibSetGeneralPreference
	BtLibGetGeneralPreference
	Link Preferences:
	General Preferences

	Sockets
	BtLibSocketCreate
	BtLibSocketClose
	BtLibSocketListen
	BtLibSocketConnect
	BtLibSocketConnectionRespond
	BtLibSocketSend
	BtLibSocketGetInfo
	Socket Information

	Service Discovery Protocol (SDP)
	BtLibSdpGetServiceRecordsByServiceClass
	BtLibSdpServiceRecordMapRemote
	BtLibSdpServiceRecordCreate
	BtLibSdpServiceRecordDestroy
	BtLibSdpServiceRecordStartAdvertising
	BtLibSdpServiceRecordStopAdvertising
	BtLibSdpServiceRecordSetAttributesForSocket
	BtLibSdpServiceRecordSetAttribute
	BtLibSdpServiceRecordGetAttribute
	BtLibSdpServiceRecordGetLengthOfStringOrURL
	BtLibSdpServiceRecordGetNumListEntries
	BtLibSdpServiceRecordGetNumLists
	BtLibSdpServiceRecordSetRawAttribute
	BtLibSdpServiceRecordGetRawAttribute
	BtLibSdpServiceRecordGetSizeOfRawAttribute

	Bluetooth byte ordering routines
	BtLibHTo/NS/NL/HS/HL

	Bluetooth Address Conversion
	BtLibAddrBtdToA
	BtLibAddrBtdToA

